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Importance of Energy Forecasting

Why accurate energy forecasting is crucial for various sectors (energy utilities,
mManufacturing, transportation, etc.)?

What is the impact on decision-making, resource allocation, and cost management?

Energy Forecasting
* is critical in the design and operation of power systems.
* helps energy suppliers to anticipate electricity use and prepare for
future power demands.
* supports distribution and transmission system operators
* has received a lot of attention in recent years
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Types of Energy Forecasting Techniques

Energy (or Power) Load/Generation Forecasting (ELF or EGF) types:

PV Generation Forecasting
Wind Generation Forecasting
Electricity Load Forecasting

Thermal (Heating — Cooling) Load Forecasting

Infrastructures:

Smart Buildings

Universities

Laboratories

PV Parks

Wind Turbines

Machines (Fridge, Washing Machine, Oven etc.)
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Models

Statistical

. ARIMA

. Exponential Smoothing

Machine (Shallow) Learning

. Popular Tree-based models like XGCBoost, Random Forest, CatBoost, LGBM
. Low memory, high speed models like LOCBM, Ridge regression

. Other classic ML models like Support Vector Regressor

Deep Learning

. Long-short term memory recurrent neural network (LSTM RNNSs)

. Gated recurrent unit recurrent neural network (GRU RNNs)

. Multi-layer Perceptron (MLP)

. Convolutional neural network (CNN)

. Sequence to Sequence recurrent neural networks (Seg25eg RNNSs)
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Parameters to be investigated

Weather Data Time Features - Miscellaneous Sensors
Seasonality
Solar Radiation Hour of day Occupancy Inside
Temperature
Outside Temperature Day of the week Reheat Coefficient  Door Open/Closed
Wind Speed Minute of hour Covid-19
Relative Humidity Day of month Holidays

Cloud Cover Month or year Building Details
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Data preparation

Are the reguested data available on a real time basis?

* Analyze the energy data source
* Ceneration (PV, Wind etc))
* Load (Electricity, Heating, Cooling etc.)

* Weather Data preparation

* Check weather APIs (MeteoStat, VisualCrossing etc.)
* Decide about weather forecast

* Other sources (occupancy, holidays, sensors etc.)
* Check time periods - resolution
* VValidate each dataset
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Data merging from various sources (Energy, Weather etc.)

e Define the communication with the Platform

e Understand the data sources:

e APls
e Databases
e Csv, xlsx Tiles etc.

« Choose merging technigue
 Inner/outer/right/left joining
* concatenation
* appending

e [dentify merging key (Timestamp etc.)
* Validate the merged dataset
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Timestamp formatting

e Understand time zones

* Local to UTC or UTC to Local: Converting timestamps
between local time and UTC (Coordinated Universal Time) is
a common task in handling time-related data

* Consider daylight saving time changes
* Historical time zone differences

e Use |libraries and modules like:
e datetime

* pytz
e stritime()

* Deliver the prediction on the requested timestamp format

and time zone
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Typical workflow of experimental forecasting modelling

‘ Energy Dataset | ‘ Weather Dataset ‘ | Seasonality Data ‘ ‘ Occupancy etc.

eeeeeee

Training and Tuning

|||||||||

Source: CERTH material
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Overall Architecture;

Data Collection and Engineering
Data preprocessing

Energy forecasting model selection for One Step
ahead

Best multi-step ahead strategy identification
Best possible ensemble technigue selection
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Energy Forecasting from different pilot sites

The problem to be solved:

* Generation Forecasting 2PV, Wind

* Load Forecasting—> Heating, Cooling, Electricity
* 15t Step: One hour, 15 minutes, One Day

* Multi-step: 24 hours ahead (24 or 96 steps)

Technologies tested

* Machine (Shallow) Learning Models
* Popular Tree-based models like XGB, CatBoost, Random Forest
* Low memory, high speed models like LGBM
* Other classic ML models like Support Vector Regressor
* Deep Learning Models
* Long-short term memory recurrent neural network
* Gated recurrent unit recurrent neural network
* Multi-layer Perceptron

* Sequence to Sequence recurrent neural networks

Core Techniques utilized

* Sliding window
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One Day ahead forecast example
Rolling Forecast 24-Hours Ahead Energy Production
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Examples of Final Implementations utilized

Hours Ahead

Gradient Boosting model's implementation on an increased sized dataset.

1) Dynamical Weighed Average Ensemble Model based on LSTM, XGBoost and Random
* Rolling (Recursive) or Direct Strategy Forest’s behaviour and Recursive Strategy or 2) Direct Strategy with 96 different Light
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Model Save and Load (1/2)

Saving a scikit-learn model:

. Use the joblib library's dump function to save the model to a file

. Example: joblio.dump(model, 'model.pkl')

Loading a scikit-learn model:

. Use the joblib library's load function to load the model from the saved file
. Example: model = joblib.load('model.pkl’)

Saving a TensorkFlow model:

. Use the modelsave() method to save the entire model or model save_weights() to
save only the model weights

. Example: modelsave('model_tf') or model.save_weights('model_weights_tf.n5')

Loading a Tensorklow model:
. Use the tf.keras.models.load_model() function to load the saved model
. Example: model = tf.keras.models.load_model('model_tf')
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Model Save and Load (2/2)

Benefits of Model Saving and Loading

. Enables reusability and reproducibility of trained models

. Facilitates deployment of trained models in production environments

. Savestime and computational resources by avoiding retraining the model from scratch
Considerations

. Ensure compatibility between the library versions used for training and loading models
. Pay attention to file size and storage requirements, especially for large models in TensorkFlow
Best Practices

. Save both the model architecture and weights for TensorFlow models to ensure complete
reproducibility

. Version control saved models along with the code using tools like Git for better tracking and
collaboration

. It is better for the models and the data to be saved on a different Cit repository
Scalers can be saved too!
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Platform Integration
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Possible integration cases:

Real time Integration:

« Pilot site provides real time emerg%data - Depending on the time step (5
minutes, 15 minutes, 1-hour etc.), the dataset is updated, and each prediction

'S based on the recent energy values.

« Usually, Sliding Window is performed including all or most of the final
oarameters.

No real time integration:

« Pilot site does not provide real time energy data =2 Dataset is not updated (at
|ea|5t not regularly), and each prediction IS not based on the recent energy
values.

e [N such cases, either simple regression models were implemented, or partial
Sliding Window is performed including parameters like weather, seasonality
(not Energy).

« No real time integration is a great tool if the data management system Is
down as a backup on a real time integration implementation
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Synthesize real time lagged values

In time-series data, relationship between independent variables and the predicted value can

vary over time

To capture these dynamics, time Iag?ged features are synthesized = incorporating past values of

the variables as inputs to the mode

Enhances learning from historical patterns = improves predictive performance.

Most prominent technique: Sliding Window

Often time-series data are shifted (24/48/96 steps) ahead based
on the asset’s resolution, in order to produce datasets

with the information of the previous day
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Implementation steps

 Real time data
collection

* Fast preprocessing

e Real time timeseries
regression

Load Scaler
for
normalization

Remove unecessa ry

parameters

Combined real
time Dataset

before

preprocessing

Fill Missing
Values
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Model Versioning, Management, Monitoring and Maintenance

Importance of versioning and managing enerqgy forecasting models:

* Tracking changes to model configurations and hyperparameters

* Ensuring reproducibility and consistency in forecasting results

* Tools and best practices for model versioning and management (GitLab, GitHub etc))
Specific infrastructure requirements for deploying energy forecasting models:

* Scalability to handle large volumes of data

* Reliability to ensure continuous operation

» Cost considerations, especially for cloud-based solutions vs. on-premises infrastructure

& GitLab O

GitHub
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Model Versioning, Management, Monitoring and Maintenance

Specific monitoring considerations for deployved enerqgy forecasting models:

* Monitoring forecast performance over time

* Detecting and addressing concept drift in data distributions

* Ensuring fairness and transparency in model predictions

Consider getting help and documentation from various sources

* Al based tools (ChatGPT, Claude 2, Bing Al \\

* Websites (Stack Overflow, Medium, Reddit, Kaggle) §
I

* Online Platforms (Udemy, W35chools, Coursera)

x
Retrain cycles after deployment is important! Udel I |y
* Retrain after specific period (every month, 3 months, year etc))

* Retrain after a validation week, if metrics are worse (be aware of holidays, covid, emergencies

etc.)
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